


# PHILIPPINE GREENHOUSE GAS INVENTORY MANAGEMENT AND REPORTING SYSTEM

# 2015 AND 2020 NATIONAL GREENHOUSE GAS INVENTORY REPORTS

**Executive Brief** 



# Executive Brief of the 2015 and 2020 National Greenhouse Gas Inventory Reports of the Philippines

This Executive Brief provides an overview of the Philippines' 2015 and 2020 National Greenhouse Gas Inventory Reports. This document presents the contributions of five (5) key sectors defined in Decision 18/CMA.1 to the country's GHG emissions and removals, namely: [1] energy; [2] industrial processes and product use (IPPU); [3] agriculture; [4] land use, land use change, and forestry (LULUCF); and [5] waste.

The 2015 and 2020 National GHG inventories are products of the implementation of Executive Order 174, series of 2014, and were based on the sectoral greenhouse gas inventory reports prepared by the lead agencies of the Philippine Greenhouse Gas Inventory Management and Reporting System (PGHGIMRS), then consolidated by the Climate Change Commission (CCC).

#### Published by:



Climate Change Commission 6th Floor, First Residences J.P. Laurel Street, Malacañang San Miguel, Manila

Philippines 1005

Climate Change Office – Climate Change Commission Philippines Rm. 611-612, First Residences, Malacañang Compound, San Miguel, Manila

Phone: (632) 8254 7056; Email: iod@climate.gov.ph | www.climate.gov.ph | www.niccdies.climate.gov.ph

#### **Climate Change Commission:**

Secretary Maria Antonia Yulo-Loyzaga, Official Representative of the President to the Commission Vice Chairperson and Executive Director Robert E.A. Borje Commissioner Rachel Anne S. Herrera Commissioner Albert P. Dela Cruz Sr.

#### **PGHGIMRS Secretariat (Lead Author)**

(Recabar, S.G., Evangelista, A.S., Francisco, J. S., Palma, R.I., Apostol, J.C., Causon, E.A.) Climate Change Office, Climate Change Commission

#### **Contributors:**

DA-Climate Resilient Agriculture Office (DA-CRAO) GHG Inventory Team DENR-Climate Change Service (CCS) GHG Inventory Team DENR-Environmental Management Bureau (EMB) GHG Inventory Team DENR-Forest Management Bureau (FMB) GHG Inventory Team Department of Energy (DOE) GHG Inventory Team Philippine Statistics Authority (PSA) GHG Inventory Team

#### **Cover Layout**

Information and Knowledge Management Division

#### Layout

Palma, R.I., Apostol, J.C., Causon, E.A.

#### Place and date of Publication

Manila, Philippines July 2024

#### **Recommended Citation:**

Philippine Climate Change Commission. (July 2024). Executive Brief of the 2015 and 2020 National Greenhouse Gas Inventory Reports. Manila, Philippines. [S. Recabar, A. Evangelista, J. Francisco, R. Palma, J. Apostol, E. Causon]

# **Table of Contents**

| Executive Brief of the 2015 and 2020 National Greenhouse Gas Inventory the Philippines | •   |
|----------------------------------------------------------------------------------------|-----|
| List of Tables                                                                         | iii |
| List of Figures                                                                        | iv  |
| Introduction                                                                           | 1   |
| Methodology and Assumption                                                             | 2   |
| Summary of the 2015 and 2020 Philippine National GHG Inventories                       | 3   |
| By Sector                                                                              | 3   |
| By Gas                                                                                 | 5   |
| 2015 and 2020 National GHG Inventories by Sector                                       | 6   |
| Energy Sector                                                                          | 6   |
| IPPU Sector                                                                            | 8   |
| Agriculture Sector                                                                     | 9   |
| LULUCF Sector                                                                          | 11  |
| Waste                                                                                  | 13  |
| Key Category Analysis                                                                  | 14  |
| Institutional Arrangements                                                             | 15  |
| Improvement Plan                                                                       | 17  |
| References                                                                             | 19  |

# List of Tables

| Table 1. Reporting schemes used in the Philippine National GHG Inventories1                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2. Summary of 2015 and 2020 National GHG Emissions and Removals Inventory per sector (in GgCO <sub>2</sub> e; rounded in the nearest whole number) |
| Table 3. Summary of 2015 and 2020 National GHG Inventories per sector and per gas (values in GgCO <sub>2</sub> e)                                        |
| Table 4. Summary of 2015 and 2020 Energy Sector Emissions per subsector and per gas (values in GgCO <sub>2</sub> e)                                      |
| Table 5. Summary of 2015 and 2020 IPPU Sector emissions per sub-sector and per gas (values in GgCO <sub>2</sub> e)                                       |
| Table 6. Summary of 2015 and 2020 Agriculture Sector Emissions per sub-sector and per gas (values in GgCO <sub>2</sub> e)                                |
| Table 7. Summary of 2015 and 2020 FOLU Sector GHG Emissions and Removals (values in GgCO <sub>2</sub> e)11                                               |
| Table 8. Summary of 2015 and 2020 Waste Sector Emissions per sub-sector and per gas (values in GgCO <sub>2</sub> e)                                      |
| Table 9. The 2015 National GHG Inventory Key Categories Analysis (Level Assessment) . 14                                                                 |
| Table 10. The 2020 National GHG Inventory Key Categories Analysis (Level Assessment)                                                                     |
| Table 11. Latest issuances and other information in the PGHGIMRS Operationalization 16                                                                   |

# List of Figures

| Figure 1. 2015 and 2020 Philippine GHG Emissions and Removals per sector, in GgCO₂e 4                                |
|----------------------------------------------------------------------------------------------------------------------|
| Figure 2. Sectoral emissions shares of non-LULUCF sectors in the 2015 and 2020 National GHG Inventories, in percent4 |
| Figure 3. Emission shares of energy sub-sectors, 2015 and 2020 national GHG Inventories.7                            |
| Figure 4. Emission shares of IPPU sub-sectors, 2015 and 2020 national GHG Inventories 8                              |
| Figure 5. Emission shares of agriculture sub-sectors, 2015 and 2020 national GHG inventories                         |
| Figure 6. Emissions and removals of LULUCF sub-sectors, 2015 and 2020 National GHG Inventories                       |
| Figure 7. Emission shares of waste sub-sectors, 2015 and 2020 national GHG inventories.                              |

### Introduction

This Executive Brief is based on the 2015 and 2020 National GHG Inventory Document, a compilation of sectoral greenhouse gas inventory reports (SIRs) from the lead agencies, consolidated by the Climate Change Commission (CCC).

Following the greenhouse gases prescribed by the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines), four (4) GHGs were identified and accounted for in this inventory cycle: [1] carbon dioxide (CO<sub>2</sub>); [2] methane (CH<sub>4</sub>); [3] nitrous oxide (N<sub>2</sub>O); and [4] hydrofluorocarbons (HFCs) based on best available data.

This Executive Brief reports the results of the 2015 and 2020 National GHG Inventory report in terms of the five (5) sectors defined in Decision 18/CMA.1, Section II, paragraph 50 wherein each Party shall report the following sectors according to the IPCC guidelines: [1] energy; [2] IPPU or industrial processes and product use; [3] agriculture; [4] LULUCF or land use, land use change, and forestry; and [5] waste.

The 2015 and 2020 National GHG Inventory Report, on the other hand, presented the results in seven (7) key GHG sectors based on the institutional arrangement established by Executive Order No. 174, wherein transport is reported as a stand-alone sector and the LULUCF sector is divided into [1] Forestry and [2] Other Land Use sectors.

**Table 1.** Reporting schemes used in the Philippine National GHG Inventories

| 2006 IPCC Guidelines | Decision 18/CMA.1 | 2015 and 2020 National GHG<br>Inventories of the Philippines |
|----------------------|-------------------|--------------------------------------------------------------|
| Volume 2: Energy     | Energy            | Energy                                                       |
| Volume 2. Energy     | Litergy           | Transport                                                    |
| Volume 3: IPPU       | IPPU              | IPPU                                                         |
|                      | Agriculture       | Agriculture                                                  |
| Volume 4: AFOLU      | LULUCF            | Forestry                                                     |
|                      | LULUCP            | Other Land Use                                               |
| Volume 5: Waste      | Waste             | Waste                                                        |

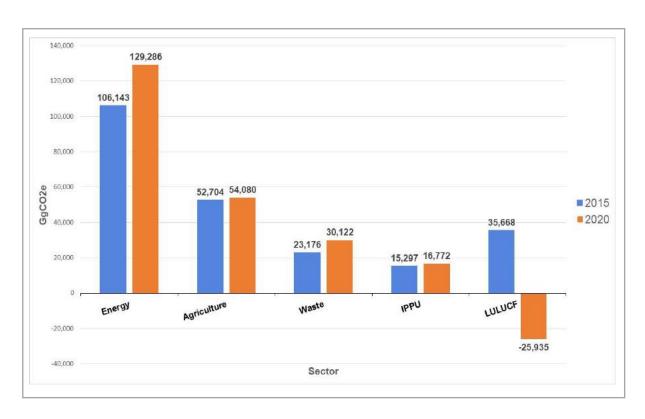
# Methodology and Assumption

Pursuant to Decision 18/CMA.1, the methodologies, assumptions, and default factors used in the 2015 and 2020 GHG Inventories followed the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (hereinafter referred to as the 2006 IPCC Guidelines). The 2006 IPCC Guidelines provided internationally agreed methodologies for estimating national inventories of anthropogenic emissions by sources and removals by sinks of greenhouse gases. The 2006 IPCC Guidelines were developed to assist Parties in fulfilling their reportorial requirements under the United Nations Framework Convention on Climate Change (UNFCCC) on reporting on inventories of anthropogenic GHG emissions not controlled by the Montreal Protocol.

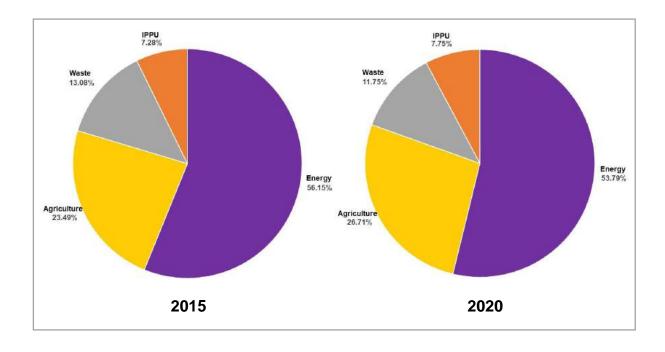
The 2006 IPCC Guidelines generally provide recommendations on estimation methods at three levels of detail; from tier 1 (the default and simplest method) to tier 3 (the most detailed method). For the 2015 and 2020 GHG Inventories, the Tier 1 method was used across the five sectors while the Tier 2 method was specifically applied to the production of cement and the use of ozone-depleting substances (ODS) substitutes for refrigeration and air conditioning under IPPU.

After data collection and quality checks, activity data and factors were employed in the IPCC Inventory Software v. 2.691 to facilitate the emissions and removal estimation process. Key categories with significant influence on the country's total inventory were identified using Approach 1 level assessment and trend assessment. In terms of the Global Warming Potential (GWP) values used in the inventory, the 100-year time horizon GWP values from the IPCC Fifth Assessment Report were adopted as promulgated by Decision 18/CMA.1.

# Summary of the 2015 and 2020 Philippine National GHG Inventories


## Emissions profile per Sector

The Philippine non-LULUCF sectors emitted a total of 197,319 and 230,260 Gigagrams of carbon dioxide equivalent (GgCO<sub>2</sub>e) in 2015 and 2020, respectively. Considering removals by sink, the reported net emissions in 2020 were 204,325 GgCO<sub>2</sub>e with a decrease of 12.30% from that of the previous year (232,988 GgCO<sub>2</sub>e).


Table 2 and Figures 1 and 2 provide a summary of emissions and removals for both inventory years.

**Table 2.** Summary of 2015 and 2020 National GHG Emissions and Removals Inventory per sector (in GgCO<sub>2</sub>e; rounded to the nearest whole number)

| Sector                          | 2015 GHG<br>Inventory | I I I I I I I I I I I I I I I I I I I |         | Percent<br>Change |  |  |  |  |  |
|---------------------------------|-----------------------|---------------------------------------|---------|-------------------|--|--|--|--|--|
| Energy                          | 106,143               | 129,286                               | 23,142  | 21.80%            |  |  |  |  |  |
| Agriculture                     | 52,704                | 54,080                                | 1,376   | 2.61%             |  |  |  |  |  |
| Waste                           | e 23,176 30,122       |                                       | 6,947   | 29.97%            |  |  |  |  |  |
| IPPU                            | 15,297 16,772         |                                       | 1,476   | 9.65%             |  |  |  |  |  |
| LULUCF                          | OF 35,668 -25,935     |                                       | -61,603 | -172.71%          |  |  |  |  |  |
| Total Emissions<br>(w/o LULUCF) | 197,319               | 230,260                               | 32,941  | 16.69%            |  |  |  |  |  |
| Net Emissions<br>(w/ LULUCF)    | 232,988               | 204,325                               | -28,662 | -12.30%           |  |  |  |  |  |



**Figure 1.** 2015 and 2020 Philippine GHG Emissions and Removals per sector in GgCO<sub>2</sub>e



**Figure 2.** Sectoral emissions shares of non-LULUCF sectors in the 2015 and 2020 National GHG Inventories in percentage

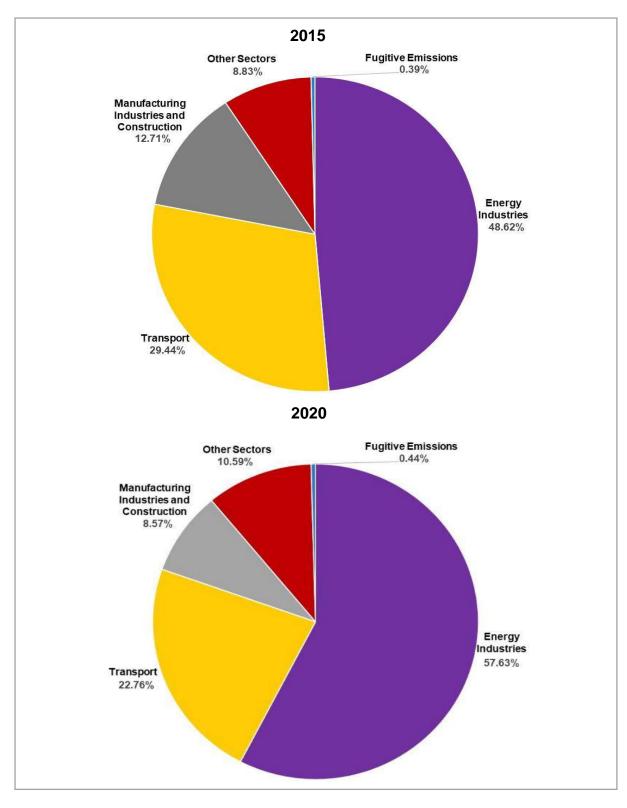
# Emission profile per Gas

Table 3. Summary of 2015 and 2020 National GHG Inventories per sector and per gas (values in GgCO<sub>2</sub>e)

| Sector                    | CO <sub>2</sub> |         | CH₄    |        | N₂O    |        | HFCs  |       | TOTAL<br>(GgCO₂e) |         |
|---------------------------|-----------------|---------|--------|--------|--------|--------|-------|-------|-------------------|---------|
|                           | 2015            | 2020    | 2015   | 2020   | 2015   | 2020   | 2015  | 2020  | 2015              | 2020    |
| Energy                    | 102,496         | 124,762 | 2,605  | 3,046  | 1,043  | 1,477  | -     | -     | 106,143           | 129,286 |
| Agriculture               | 570             | 765     | 37,852 | 38,434 | 14,281 | 14,881 | -     | -     | 52,704            | 54,080  |
| Waste                     | 2               | 0       | 22,106 | 28,646 | 1,068  | 1,476  | ı     | 1     | 23,176            | 30,122  |
| IPPU                      | 13,032          | 13,666  | 30     | 28     | -      | 1      | 2,234 | 3,078 | 15,297            | 16,772  |
| LULUCF                    | 35,668          | -25,935 | -      | -      | -      | -      | -     | 1     | 35,668            | -25,935 |
| TOTAL<br>GHG <sup>1</sup> | 116,101         |         | C2 502 | 70,155 | 40 204 | 47.022 | 2 224 | 2.070 | 197,319           | 230,260 |
| NET GHG <sup>2</sup>      | 151,769         | 113,259 | 62,593 |        | 16,391 | 17,833 | 2,234 | 3,078 | 232,988           | 204,325 |

<sup>1</sup> without LULUCF <sup>2</sup> with LULUCF

# 2015 and 2020 National GHG Inventories by Sector


## **Energy Sector**

The total emissions for the Energy sector (including transport, as a sub-sector) in the 2015 and 2020 National GHG Inventories are 106,143 GgCO₂e and 129,286 GgCO₂e, respectively. The energy sector, including transportation, accounted for the largest emitting sector in 2020. The majority of GHG emissions in this sector come from emissions from the combustion of fossil fuels for power generation.

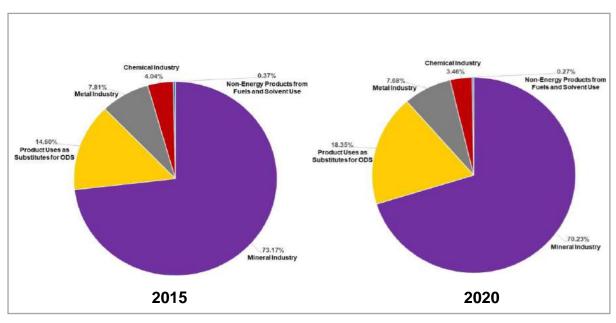
Detailed GHG emissions in the energy sector by source and gas type in 2015 and 2020 are presented in Table 4 and Figure 3.

**Table 4.** Summary of 2015 and 2020 Energy Sector Emissions per subsector and per gas (values in GqCO<sub>2</sub>e).

|                                                 | CO <sub>2</sub> |         | CH <sub>4</sub> |       | N <sub>2</sub> O |       | Total   |         |
|-------------------------------------------------|-----------------|---------|-----------------|-------|------------------|-------|---------|---------|
| Energy Sub-<br>sector                           | 2015            | 2020    | 2015            | 2020  | 2015             | 2020  | 2015    | 2020    |
| Energy<br>Industries                            | 51,415          | 74,183  | 23              | 40    | 172              | 289   | 51,610  | 74,512  |
| Manufacturing<br>Industries and<br>Construction | 13,233          | 10,275  | 112             | 355   | 148              | 453   | 13,494  | 11,083  |
| Transport                                       | 30,722          | 28,896  | 50              | 46    | 477              | 490   | 31,249  | 29,431  |
| Other Sectors                                   | 7,085           | 11,398  | 2,048           | 2,046 | 244              | 245   | 9,377   | 13,689  |
| Fugitive<br>Emissions                           | 41              | 10      | 372             | 560   | 0                | 0     | 413     | 570     |
| Total                                           | 102,496         | 124,762 | 2,605           | 3,046 | 1,043            | 1,477 | 106,143 | 129,286 |



**Figure 3.** Emission shares of energy sub-sectors from the 2015 and 2020 National GHG Inventories.


### Industrial Processes and Products Use (IPPU) Sector

The total emissions for the IPPU sector in the 2015 and 2020 National GHG Inventory are 15,297 GgCO<sub>2</sub>e and 16,772 GgCO<sub>2</sub>e, respectively. The majority of GHG emissions in this sector are attributed to two (2) major factors: (1) demand for cement to continue the implementation of the government's infrastructure program; and (2) an increase in the purchase of mobile and stationary air-conditioning due to increasing temperature.

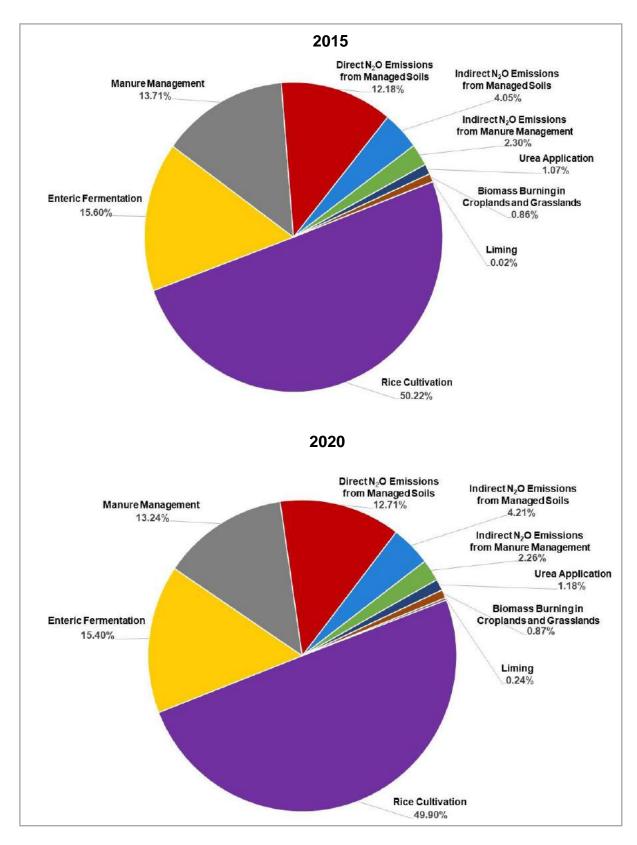
Detailed GHG emissions in the IPPU sector by source and gas type in 2015 and 2020 are presented in Table 5 and Figure 4.

**Table 5.** Summary of 2015 and 2020 IPPU Sector Emissions per sub-sector and per gas (values in GgCO<sub>2</sub>e).

| IDDU O I                                             | CO <sub>2</sub> |        | CH <sub>4</sub> |      | HFCs  |       | TOTAL  |        |
|------------------------------------------------------|-----------------|--------|-----------------|------|-------|-------|--------|--------|
| IPPU Subsectors                                      | 2015            | 2020   | 2015            | 2020 | 2015  | 2020  | 2015   | 2020   |
| Mineral Industry                                     | 11,192          | 11,780 | -               | -    | -     | -     | 11,192 | 11,780 |
| Chemical Industry                                    | 596             | 560    | 22              | 21   | -     | -     | 618    | 581    |
| Metal Industry                                       | 1,187           | 1,281  | 8               | 7    | -     | -     | 1,195  | 1,288  |
| Non-Energy Products<br>from Fuels and Solvent<br>Use | 56              | 46     | -               | -    | -     | -     | 56     | 46     |
| Product Uses as<br>Substitutes for ODS               | -               | -      | -               | -    | 2,234 | 3,078 | 2,234  | 3,078  |
| TOTAL                                                | 13,032          | 13,666 | 30              | 28   | 2,234 | 3,078 | 15,297 | 16,772 |



**Figure 4.** Emission shares of IPPU sub-sectors from the 2015 and 2020 National GHG Inventories


## **Agriculture Sector**

The total emissions for the agriculture sector in the 2015 and 2020 National GHG Inventory is  $52,704~GgCO_2e$  and  $54,080~GgCO_2e$ , respectively. Generally, the increase in GHG emissions in the agriculture sector was driven by the increase in crop production of Palay and Corn, and livestock production.

Detailed GHG emissions in the agriculture sector by source and gas type in 2015 and 2020 are presented in Table 6 and Figure 5.

**Table 6.** Summary of 2015 and 2020 Agriculture Sector Emissions per sub-sector and per gas (values in GgCO<sub>2</sub>e).

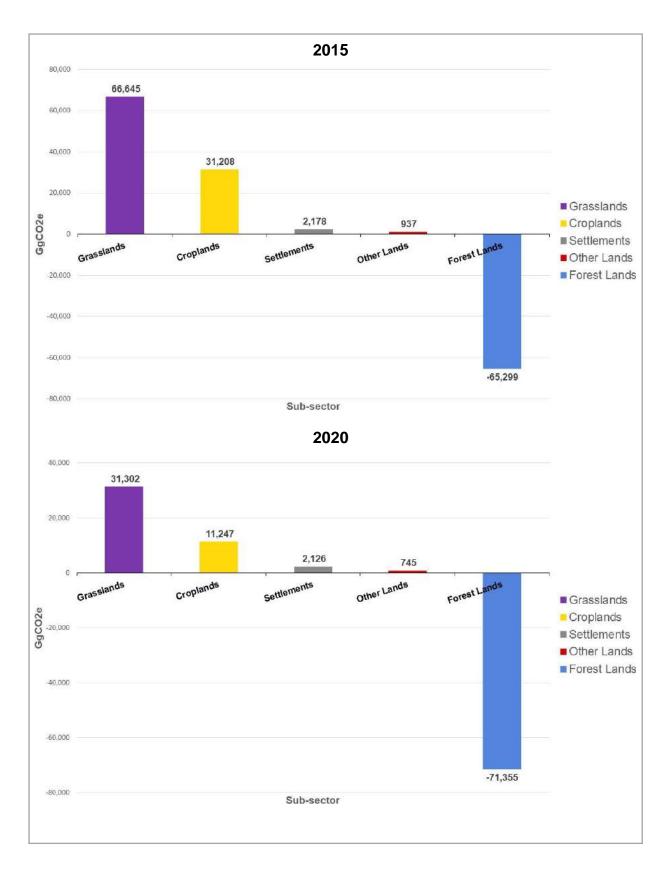
| Agriculture Sub-                                             | C    | O <sub>2</sub> | C      | CH₄    |        | N <sub>2</sub> O |        | TOTAL  |  |
|--------------------------------------------------------------|------|----------------|--------|--------|--------|------------------|--------|--------|--|
| sector                                                       | 2015 | 2020           | 2015   | 2020   | 2015   | 2020             | 2015   | 2020   |  |
| Rice Cultivation                                             | -    | -              | 26,469 | 26,985 | -      | -                | 26,469 | 26,985 |  |
| Enteric<br>Fermentation                                      | -    | -              | 8,222  | 8,327  | -      | -                | 8,222  | 8,327  |  |
| Manure<br>Management                                         | -    | -              | 2,807  | 2,752  | 4,420  | 4,406            | 7,226  | 7,158  |  |
| Direct N <sub>2</sub> O<br>Emissions from<br>Managed Soils   | -    | -              | -      | -      | 6,419  | 6,875            | 6,419  | 6,875  |  |
| Indirect N <sub>2</sub> O<br>Emissions from<br>Managed Soils | -    | -              | -      | -      | 2,133  | 2,277            | 2,133  | 2,277  |  |
| Indirect N <sub>2</sub> O Emissions from Manure Management   | -    | -              | -      | -      | 1,213  | 1,220            | 1,213  | 1,220  |  |
| Urea Application                                             | 562  | 637            | -      | -      | -      | -                | 562    | 637    |  |
| Biomass Burning in Cropland                                  | -    | -              | 338    | 354    | 83     | 87               | 421    | 441    |  |
| Biomass Burning in Grassland                                 | -    | -              | 16     | 16     | 14     | 14               | 30     | 31     |  |
| Liming                                                       | 8    | 128            | -      | -      | -      | -                | 8      | 128    |  |
| TOTAL                                                        | 570  | 765            | 37,852 | 38,434 | 14,281 | 14,881           | 52,704 | 54,080 |  |



**Figure 5.** Emission shares of agriculture sub-sectors from the 2015 and 2020 National GHG Inventories

#### Land Use, Land Use Change, and Forestry (LULUCF) Sector

For the LULUCF sector, significant changes were observed. In 2015, net emissions were 35,668 GgCO2e. By 2020, the sector had become a net sink, with emissions at -25,935 GgCO2e. These changes were primarily driven by land conversions to different land categories. The substantial increase in forest land cover greatly enhanced the country's forest carbon sequestration potential.


Detailed GHG emissions and removals in the LULUCF sector by source and gas type in 2015 and 2020 are presented in Table 7 and Figure 6.

**Table 7.** Summary of 2015 and 2020 FOLU Sector GHG Emissions and Removals (values in GgCO₂e).

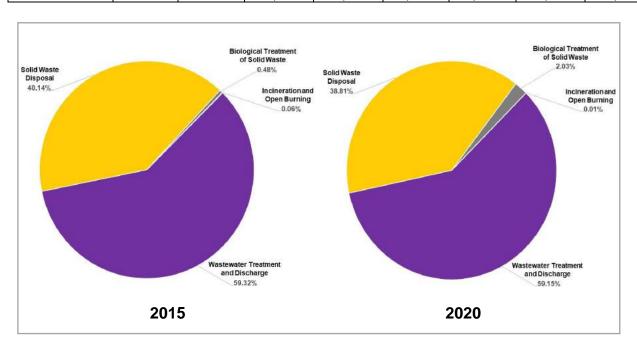
|    | Categories   | 2015    | 2020    |  |
|----|--------------|---------|---------|--|
| a. | Forest Lands | -65,299 | -71,355 |  |
| b. | Croplands    | 31,208  | 11,247  |  |
| C. | Grasslands   | 66,645  | 31,302  |  |
| d. | Settlements  | 2,178   | 2,126   |  |
| e. | Other Land   | 937     | 745     |  |
|    | TOTAL        | 35,668  | -25,935 |  |

#### Notes:

- a. Totals may not add up due to rounding off
- b. Negative sign indicates net removals/sink of CO<sub>2</sub>



**Figure 6.** Emissions and removals of LULUCF sub-sectors from the 2015 and 2020 National GHG Inventories.


#### Waste

The total emissions for the Waste sector in the 2015 and 2020 National GHG Inventory is 23,176 GgCO<sub>2</sub>e and 30,122 GgCO<sub>2</sub>e, respectively. The increase in GHG emissions in the waste sector was attributed to the improvement in activity data collection, increase in population, and boost in industrial production.

Details of GHG emissions in the Waste sector per subcategories in 2015 and 2020 are presented in Figure 7 and Table 8.

**Table 8.** Summary of 2015 and 2020 Waste Sector Emissions per sub-sector and per gas (values in GqCO<sub>2</sub>e)

| Waste        | C    | $O_2$ | CH₄    |        | $N_2O$ |       | Total  |        |
|--------------|------|-------|--------|--------|--------|-------|--------|--------|
| Subsector    | 2015 | 2020  | 2015   | 2020   | 2015   | 2020  | 2015   | 2020   |
| Solid Waste  | _    | _     | 9,304  | 11,690 | _      | _     | 9,304  | 11,690 |
| Disposal     | _    | _     | 9,304  | 11,090 | _      | _     | 9,304  | 11,090 |
| Biological   |      |       |        |        |        |       |        |        |
| Treatment of | -    | -     | 71     | 392    | 40     | 222   | 111    | 614    |
| Solid Waste  |      |       |        |        |        |       |        |        |
| Incineration |      |       |        |        |        |       |        |        |
| and Open     | 2    | 0     | 9      | 1      | 2      | 0     | 13     | 2      |
| Buring       |      |       |        |        |        |       |        |        |
| Wastewater   |      |       |        |        |        |       |        |        |
| Treatment    |      | _     | 12,722 | 16,564 | 1,026  | 1,253 | 13,748 | 17,817 |
| and          | -    | -     | 12,122 | 10,304 | 1,020  | 1,233 | 13,740 | 17,017 |
| Discharge    |      |       |        |        |        |       |        |        |
| TOTAL        | 2    | 0     | 22,106 | 28,646 | 1,068  | 1,476 | 23,176 | 30,122 |



**Figure 7.** Emission shares of waste sub-sectors from the 2015 and 2020 National GHG Inventories

# **Key Category Analysis**

As defined in the 2006 IPCC Guidelines, "a key category is prioritized within the national inventory system because its estimate has a significant influence on a country's total inventory of greenhouse gases in terms of the absolute level, the trend, or the uncertainty in emissions and removals. Whenever the term key category is used, it includes both source and sink categories."

For the 2015 and 2020 inventories, the approach 1 Quantitative Method was used for the Key Category Analysis (KCA) wherein the aggregation level was based on the suggested aggregation level as stated in Table 4.1 of the 2006 IPCC Guidelines Volume 1.

Table 9 below shows the results of the KCA using Approach 1 Level Assessment (Table 4.6.1 from the 2006 IPCC Guidelines Volume 1). This KCA was done using a spreadsheet program (outside IPCC software) due to the RAC subsector of the IPPU sector using the Tier 2A model.

For level assessment, 17 and 18 key categories were identified in 2015 and 2020, respectively. All the key categories identified in 2015 are also present in 2020; however, most of the ranking of each category have differed except for  $CO_2$  removals from Land Converted to Forest land (Rank 7), Direct  $N_2O$  emissions from managed soils (Rank 14), and  $N_2O$  and  $CH_4$  emissions from Manure Management (Rank 15 and 17 respectively). The key category added for 2020 is the emissions of HFCs in the activity of Refrigeration and Air Conditioning.

For both inventory years, the activities that most significantly impacted the country's total emissions were land use conversions, forest land sequestration, and emissions from energy industries and rice cultivation.

**Table 9.** The 2015 National GHG Inventory Key Categories Analysis (Level Assessment).

| Rank Sector |        | IPCC    | Activity                                  | Coo              | Percent      | Cumulative |
|-------------|--------|---------|-------------------------------------------|------------------|--------------|------------|
| Rank        | Sector | Code    | Activity                                  | Gas              | Contribution | Percentage |
| 1           | AFOLU  | 3.B.3.b | Land Converted to Grassland               | CO <sub>2</sub>  | 18.33%       | 18.33%     |
| 2           | Energy | 1.A.1   | Energy Industries                         | CO <sub>2</sub>  | 14.14%       | 32.47%     |
| 3           | AFOLU  | 3.B.1.a | Forest Land Remaining Forest land         | CO <sub>2</sub>  | 12.16%       | 44.63%     |
| 4           | AFOLU  | 3.B.2.b | Land Converted to Cropland                | CO <sub>2</sub>  | 8.58%        | 53.21%     |
| 5           | AFOLU  | 3.C.7   | Rice Cultivation                          | CH <sub>4</sub>  | 7.28%        | 60.49%     |
| 6           | Energy | 1.A.3.b | Road Transportation                       | CO <sub>2</sub>  | 7.22%        | 67.71%     |
| 7           | AFOLU  | 3.B.1.b | Land Converted to Forest Land             | CO <sub>2</sub>  | 5.80%        | 73.51%     |
| 8           | Energy | 1.A.2   | Manufacturing Industries and Construction | CO <sub>2</sub>  | 3.64%        | 77.15%     |
| 9           | Waste  | 4.D     | Wastewater Treatment and Discharge        | CH <sub>4</sub>  | 3.50%        | 80.65%     |
| 10          | IPPU   | 2.A.1   | Cement Production                         | CO <sub>2</sub>  | 3.00%        | 83.65%     |
| 11          | Waste  | 4.A     | Solid Waste Disposal                      | CH <sub>4</sub>  | 2.56%        | 86.21%     |
| 12          | AFOLU  | 3.A.1   | Enteric Fermentation                      | CH₄              | 2.26%        | 88.47%     |
| 13          | Energy | 1.A.4   | Other Sectors                             | $CO_2$           | 1.95%        | 90.42%     |
| 14          | AFOLU  | 3.C.4   | Direct N2O Emissions from Managed Soils   | N <sub>2</sub> O | 1.77%        | 92.18%     |
| 15          | AFOLU  | 3.A.2   | Manure Management                         | N <sub>2</sub> O | 1.22%        | 93.40%     |
| 16          | Energy | 1.A.3.d | Water-borne Navigation                    | CO <sub>2</sub>  | 0.86%        | 94.26%     |
| 17          | AFOLU  | 3.A.2   | Manure Management                         | CH <sub>4</sub>  | 0.77%        | 95.04%     |

**Table 10.** The 2020 National GHG Inventory Key Categories Analysis (Level Assessment).

| Rank | Sector | IPCC<br>Code | Activity                                             | Gas              | Percent<br>Contribution | Cumulative Percentage |
|------|--------|--------------|------------------------------------------------------|------------------|-------------------------|-----------------------|
| 1    | Energy | 1.A.1        | Energy Industries                                    | CO <sub>2</sub>  | 21.38%                  | 21.38%                |
| 2    | AFOLU  | 3.B.1.a      | Forest land Remaining Forest Land                    | CO <sub>2</sub>  | 16.73%                  | 38.11%                |
| 3    | AFOLU  | 3.B.3.b      | Land Converted to Grassland                          | CO <sub>2</sub>  | 9.02%                   | 47.13%                |
| 4    | AFOLU  | 3.C.7        | Rice Cultivation                                     | CH <sub>4</sub>  | 7.78%                   | 54.90%                |
| 5    | Energy | 1.A.3.b      | Road Transportation                                  | CO <sub>2</sub>  | 7.41%                   | 62.32%                |
| 6    | Waste  | 4.D          | Wastewater Treatment and Discharge                   | CH <sub>4</sub>  | 4.77%                   | 67.09%                |
| 7    | AFOLU  | 3.B.1.b      | Land Converted to Forest Land                        | CO <sub>2</sub>  | 3.83%                   | 70.92%                |
| 8    | Waste  | 4.A          | Solid Waste Disposal                                 | CH <sub>4</sub>  | 3.37%                   | 74.29%                |
| 9    | IPPU   | 2.A.1        | Cement Production                                    | CO <sub>2</sub>  | 3.31%                   | 77.60%                |
| 10   | Energy | 1.A.4        | Other Sectors                                        | CO <sub>2</sub>  | 3.28%                   | 80.88%                |
| 11   | AFOLU  | 3.B.2.b      | Land Converted to Cropland                           | CO <sub>2</sub>  | 3.24%                   | 84.12%                |
| 12   | Energy | 1.A.2        | Manufacturing Industries and Construction            | CO <sub>2</sub>  | 2.96%                   | 87.08%                |
| 13   | AFOLU  | 3.A.1        | Enteric Fermentation                                 | CH <sub>4</sub>  | 2.40%                   | 89.48%                |
| 14   | AFOLU  | 3.C.4        | Direct N <sub>2</sub> O Emissions from Managed Soils | N <sub>2</sub> O | 1.98%                   | 91.46%                |
| 15   | AFOLU  | 3.A.2        | Manure Management                                    | N <sub>2</sub> O | 1.27%                   | 92.73%                |
| 16   | IPPU   | 2.F.1        | Refrigeration and Air Conditioning                   | HFC<br>s         | 0.89%                   | 93.62%                |
| 17   | AFOLU  | 3.A.2        | Manure Management                                    | CH <sub>4</sub>  | 0.79%                   | 94.41%                |
| 18   | Energy | 1.A.3.d      | Water-borne Navigation                               | CO <sub>2</sub>  | 0.67%                   | 95.09%                |

# **Institutional Arrangements**

Developing a comprehensive national inventory in line with the following inventory principles: transparency; accuracy; completeness; consistency; and comparability is highly contingent on robust institutional arrangements, availability and quality of data, proper understanding of the calculation approaches, and the capacity to compile a national report. Therefore, the participation of relevant agencies as data providers consistent with their respective mandates is crucial to the success of continuous GHG inventory development.

On 24 November 2014, by virtue of E.O. 174, the Philippine Greenhouse Gas Inventory Management and Reporting System (PGHGIMRS) was institutionalized in relevant government agencies. The Executive Order is envisioned to be an enabling mechanism for the country to transition towards a climate-resilient, low-carbon pathway for sustainable development.

In service to E.O. 174, lead sectoral agencies established their GHG teams internal to their respective institutions through Department/Special Orders (DO/SO). This is summarized in Table 11 below.

**Table 11.** Latest issuances and other information in the PGHGIMRS Operationalization.

| Sector                                      | Agency                                | Tasks per EO 174                                                                                                                                                                                                                                                                                   | Latest Supporting Issuances                                                             |
|---------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Overall                                     | Climate Change<br>Commission          | <ol> <li>Provide overall guidance in the accounting and reporting of GHG emissions and removals</li> <li>Develop a system for archiving, monitoring, and reporting GHG inventories</li> <li>Provide and facilitate capacity-building initiatives on matters relating to GHG inventories</li> </ol> | CCC Commission<br>Resolution 2018-<br>003: E.O. 174 IRR<br>CCC Office Order<br>2019-122 |
|                                             | Department of<br>Agriculture          |                                                                                                                                                                                                                                                                                                    | DA Special Order<br>No. 683, s.2021                                                     |
| Agriculture                                 | Philippine<br>Statistics<br>Authority |                                                                                                                                                                                                                                                                                                    | PSA Special Order<br>No. 2017-10NS-<br>1499                                             |
| Energy                                      | Department of<br>Energy               |                                                                                                                                                                                                                                                                                                    | DOE Special Order<br>No. 2021-09-0043                                                   |
| Transport                                   | Department of<br>Transportation       | Conduct, document, archive, and monitor sector-specific                                                                                                                                                                                                                                            | DOTr Department<br>Order No. 2018-001                                                   |
| Waste  Industrial Processes and Product Use | Department of Environment and Natural | GHG inventories  2. Report sector-specific GHG inventories to the CCC                                                                                                                                                                                                                              | DENR EMB Special<br>Order No. 2016-297                                                  |
| Forestry Other Land Use                     | Resources                             |                                                                                                                                                                                                                                                                                                    | DENR FMB Special<br>Order No. 2021-55                                                   |

## Improvement Plan

The institutional arrangement and activity data collection, analysis, and archiving system for the National GHG Inventory is continuously being reviewed and improved. The next National GHG Inventory cycle will be using the 2006 IPCC Guidelines. The focus of the work would be on strengthening the disaggregation and completeness of activity data in accordance with the IPCC Guidelines.

#### **Sectoral GHG Inventory Improvement Plan**

For the Energy sector, the identified problem was the disaggregation of data needed to estimate and report emissions in the proper/correct category/subcategory. Raised solutions were to include GHG inventory-related data, such as fuel consumption and flaring, as part of the regular reporting of energy industries to DOE units. It was also recommended to expand the GHG Inventory training to more/all members of the DOE GHG Inventory Team. To further extend the efforts to improve the completeness of activity data, it was also suggested to have continuous data gathering, use of Energy Efficiency & Conservation (EE&C) Act, mandating the submissions of industries, and inclusion of data gathered in the Energy Balance Table (EBT) database.

For the IPPU sector, the availability of activity data depended on the willingness of the industries to share information and submit Self-Monitoring Report (SMR) to EMB via hard copy, making it more difficult to access specific information needed for the inventory. Lack of manpower and resources in regional offices of EMB were also identified resulting in the inability to manage their functions as GHG Inventory team. It was suggested to develop an online data collection system and to institutionalize an efficient GHG data collection/reporting system with data-providing industries. Further, it is also important to mainstream the function and responsibilities of the offices and members of the GHG Technical Working Group (TWG) as part of their regular programs and activities through policy issuances, as well as conducting at least once a year regional training of sectoral GHG Inventory processes and guidelines.

For the Agriculture sector, data quality of manure management, aggregated sources, and non-CO<sub>2</sub> emissions sources on land were the identified problems. It was recommended to come up with country-specific fractions through special studies and data collection. Further, data collection for the total amount of urea and synthetic fertilizers can be obtained from the Department of Agriculture (DA) / Fertilizer and Pesticide Authority (FPA).

For the FOLU sector, the identified data sources were the DENR – FMB for Forestry and the National Mapping and Resource Information Authority (NAMRIA) for Other Land Uses. Problems such as the absence of data from existing and past studies on growth increments of different species, biomass growth increment, wetlands converted to other land categories, biomass burning, and other land categories made it difficult to have an estimate for the FOLU sector. To address the gap in data availability, it was suggested to involve and include in the institutional arrangement other relevant agencies, DENR – Biodiversity Management Bureau (BMB) for wetlands, and the Department of Human Settlements and Urban Development (DHSUD) for settlements. It was also suggested to establish an archiving system as well as establishing data-sharing arrangements with the academe, research organizations, and other relevant government agencies.

For the Waste sector, data from wastewater especially for industrial wastewater was not collected and reported by institutions such as the influents' Chemical Oxygen Demand (COD). Further, existing reporting system and regulations on wastewater do not require establishments/stakeholders to submit the required data needed for the GHG Inventory. It also emphasizes the need for more capacity-building activities about data gathering and in addressing data insufficiencies, as well as the issue of the inadequacy of manpower and resources. To provide solutions and improve data collection, it was suggested to conduct a study to establish country-specific parameters on wastewater generation, COD, and treatment per type of industry. It is also needed to fully include these activities as regular functions of Bureaus, such as including the required data in the existing reporting system and developing an online database for data gathering and data archiving.

#### **National GHG Inventory Improvement Plan**

As part of the Philippines' obligations to the Paris Agreement, it is required to communicate National Inventory Report (NIR) every two (2) years. Thus, regular, and timely reporting should be made by EO 174 Agencies³ for the sectoral emissions calculations. Further, data collection must be institutionalized in preparation for regular reporting of emissions and removals to address the completeness of gaps for each sector. Efforts to develop country-specific emission factors are needed to improve the quality of the inventory. All categories should be estimated using at least a Tier 2 approach depending on data availability. The CCC should lead the recalculation of previous inventories (1994, 2000, and 2010) using the latest IPCC methodologies and global warming potential (GWP) to ensure the consistency and comparability of the country's GHG inventory reports. Also, the conduct of capacity building on the IPCC methodologies and tools should be done regularly for the various GHG inventory teams as part of data collection and data documentation.

\_

<sup>&</sup>lt;sup>3</sup> Department of Energy for energy; Department of Environment and Natural Resources for waste, industrial processes and product use, forestry, and other land use; Philippine Statistics Authority for agriculture

## References

Climate Change 2014, the Fifth Assessment Report (AR5). United Nations Intergovernmental Panel on Climate Change, 2014.

Executive Order No. 174, Institutionalizing the Philippine Greenhouse Gas Inventory Management and Reporting System, Office of the President of the Philippines, 2014.

Philippine Climate Change Commission, 2021: Executive Summary. In: 2010 Philippine Greenhouse Gas Inventory Report [S. Recabar, A. Evangelista, J. Ebora, A. Alonzo, A. Leyba, J. Francisco]

The 2006 IPCC Guidelines for National Greenhouse Gas Inventories, United Nations Intergovernmental Panel on Climate Change, 2006.